Markov Random Field Modeling in Computer Vision

Markov Random Field Modeling in Computer Vision
Автор
 
Год
 
ISBN
 
ISBN10:4431701451
Издатель
 
Springer
Искать в интернет библиотекахКупить

Описание:

Markov random field (MRF) modelling provides a basis for the characterization for contextual constraints on visual interpretation which allows for development of optimal vision algorithms systematically based on sound principles. This text presents a study on using MRFs to solve computer vision problems, covering areas such as: introduction to fundamental theories; formulations of various vision models in the MRF framework; MRF parameter estimation; and optimization algorithms. Various MRF vision models are presented in a unified form, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This book should be a useful reference for researchers working in computer vision, image processing, pattern recognition and applications of MRFs.

Похожие книги

ON LEADERSHIPON LEADERSHIP
Автор: John W. Gardner
Год: 1996
Personal Efficiency (Classic Reprint)Personal Efficiency (Classic Reprint)
Автор: James Samuel Knox
Год: 2010
Adaptive Optics for Vision ScienceAdaptive Optics for Vision Science
Автор: Jason Porter
Год: 2006
An Introduction to 3D Computer Vision Techniques and AlgorithmsAn Introduction to 3D Computer Vision Techniques and Algorithms
Автор: Boguslaw Cyganek, J. Paul Siebert
Год: 2009
Handbook of computer vision algorithms in image algebraHandbook of computer vision algorithms in image algebra
Автор: Joseph N. Wilson
Год: 2000
Handbook of Machine VisionHandbook of Machine Vision
Автор: Hornberg A. (ed.)
Год: 2006